Кто разработал метод прививок от многих болезней

кто разработал метод прививок от многих болезней

У этого термина существуют и другие значения, см.

Прививка

.

Вакцина́ция (от лат. vacca — корова) или приви́вка — введение антигенного материала с целью вызвать иммунитет к болезни, который предотвратит заражение или ослабит его отрицательные последствия.

В качестве антигенного материала используют:

  • живые, но ослабленные штаммы микробов или вирусов;
  • убитые (инактивированные) микробы (вирусы);
  • очищенный материал, например белки микроорганизмов;
  • также применяются синтетические вакцины.

По данным Европейского регионального бюро Всемирной организации здравоохранения, плановая иммунизация против полиомиелита, столбняка, дифтерии, коклюша, кори и эпидемического паротита («свинки») ежегодно спасает жизнь и здоровье 3 миллионам детей в мире. А с помощью новых вакцин, которые будут разработаны в ближайшие 5-10 лет, можно будет предотвратить гибель ещё 8 миллионов детей в год.

Выделяют пассивную и активную вакцинацию. При пассивной вакцинации вводят преформированные антитела (например, иммуноглобулинов — общий или гиперимунный) на определённый антиген (например, Hepatitis B immune globulin против гепатита B). Активная вакцинация — введение продуктов жизнедеятельности микроорганизма (анатоксина или очищенного антигена), чтобы вызвать иммунный ответ организма. При активной вакцинации микроорганизмы либо инактивированы, либо ослаблены.

Вакцинация в России

Правовое регулирование вакцинации в России осуществляется федеральными законами, федеральным правительством, приказами Министерства здравоохранения РФ, санитарно-эпидемиологическими правилами и методическими указаниями.

Вакцинация, как любая другая медицинская манипуляция, проводится после получения информированного добровольного согласия со стороны пациента или его законного представителя (для лишённых дееспособности и детей младше 15 лет). В день проведения прививки пациента подвергают осмотру врачом или фельдшером, непосредственно перед прививкой проводят термометрию. Медицинское обследование перед прививкой проводят при необходимости.

Поставлена задача включить в национальный календарь профилактических прививок вакцину от ротавирусной инфекции, а также ветряной оспы с 2020 года. В дальносрочной перспективе рассматривается возможность включения в госгарантии так же вакцины против менингококковой инфекции.

В ряде регионов России национальный календарь прививок дополнен региональным, с учётом эпидемиологической обстановки и финансовых возможностей.

     Жирным шрифтом выделены живые вакцины      V — Вакцинация      R — Ревакцинация      Г — Для групп риска      И — Инактивированная вакцина против полиомиелита      Ж — Живая вакцина против полиомиелита. За исключением детей, рождённых от матерей с ВИЧ-инфекцией, детей с ВИЧ-инфекцией и детей, которые находятся в домах ребёнка. Им показана только инактивированная вакцина от полиомиелита.

Вакцинация против вирусного гепатита В показана всем детям и взрослым в возрасте от 1 года до 55 лет, которые не были привиты ранее.

Вакцинация против краснухи и ревакцинация против краснухи показана мужчинам от 1 года до 18 лет и женщинам от 1 года до 25 лет в том случае, если они не болели, не привиты, привиты однократно против краснухи или не имеют сведений о прививках против краснухи.

Вакцинация против кори и ревакцинация против кори показана всем детям и взрослым в возрасте от 1 года до 35 лет в том случае, если они не болели, не привиты, привиты однократно против кори или не имеют сведении о прививках против кори. В возрастной категории 36-55 лет при тех же условиях вакцинация от кори показана представителям некоторых профессий.

Вакцинация против гриппа показана детям с 6 месяцев, школьникам и студентам; взрослым, работающим по отдельным профессиям и должностям; беременным женщинам; взрослым старше 60 лет; призывникам; лицам с хроническими заболеваниями лёгких, сердечно-сосудистой системы, метаболическими нарушениями и ожирением.

В случае эпидемических показаний кроме плановой вакцинации проводится вакцинация против гемофильной инфекции, ветряной оспы, пневмококковой инфекции, полиомиелита, эпидемического паротита, дифтерии, вирусного гепатита B, кори, менингококковой инфекции, шигеллёзов, вирусного гепатита А, брюшного тифа, холеры, жёлтой лихорадки, лихорадки Ку, клещевого вирусного энцефалита, лептоспироза, бешенства, сибирской язвы, чумы, туляремии.

Ложные противопоказания

В 2002 году Министерство здравоохранения России выпустило Методические указания МУ 3.3.1.1095-02, в которых разъяснены вопросы, касающиеся медотводов от вакцинации. Основными причинами ложных отводов названы перинатальная энцефалопатия, аллергия и анемии. Минздрав обращает внимание на то, что использование педиатром указанных и иных ложных противопоказаний «должно рассматриваться как свидетельство его некомпетентности в вопросах иммунопрофилактики со всеми вытекающими отсюда мерами».

Следующие состояния не несут в себе риска осложнений вакцинации и не должны быть причиной отвода от прививки:

  • Детский церебральный паралич, болезнь Дауна, «перинатальная энцефалопатия» и другие стабильные неврологические состояния;
  • Нетяжёлая анемия алиментарного генеза (тяжёлая анемия требует выяснения причины с последующим решением вопроса о времени вакцинации);
  • Дисбактериоз (такой диагноз оправдан только у больного с расстройством стула на фоне массивной антибиотикотерапии, когда вопрос о прививке не возникает до выздоровления; факт количественных или качественных отклонений микробной флоры кала от «нормы» не может являться поводом для отвода от прививки или её отсрочки);
  • Увеличение тени тимуса на рентгенограмме (такие дети хорошо переносят прививки, дают нормальный иммунный ответ, а частота поствакцинальных реакций у них не отличается от обычных детей);
  • Аллергические заболевания (этих пациентов необходимо защитить вакцинацией, так как инфекции протекают у них особенно тяжело, например, коклюш у больного астмой);
  • Врождённые пороки развития (по достижении компенсации имеющихся расстройств они перестают быть причиной для медотвода);
  • Поддерживающее лечение хронического заболевания антибиотиками, эндокринными препаратами, сердечными, противоаллергическими, гомеопатическими средствами и т. д.;
  • Местное применение стероидов в виде мазей, капель в глаза, спреев или ингаляций не сопровождается иммуносупрессией и не препятствует вакцинации;
  • Тяжёлые заболевания в анамнезе (дети первых месяцев жизни, перенёсшие такие тяжёлые заболевания, как сепсис, гемолитическая анемия, пневмония, болезнь гиалиновых мембран и др., и поправившиеся от них, вакцинируются в обычном порядке);
  • Отягощённый семейный анамнез (внезапная смерть брата или сестры в поствакцинальном периоде также не является противопоказанием для проведения вакцинации. Лишь наличие в семье больного с симптомами иммунодефицита требует обследования новорожденного до введения ему БЦЖ и использования инактивированных вакцин вместо живых).

История

До XIX века врачи в Европе часто были бессильны против широко распространённых и повторяющихся крупных эпидемий. Одним из таких инфекционных заболеваний была натуральная оспа: она ежегодно поражала миллионы людей во всём мире, умирали от неё от 20 до 30 % инфицированных, выздоровевшие часто становились инвалидами. Оспа становилась причиной 8-20 % всех смертей в европейских странах в XVIII веке. Потому именно для этого заболевания требовались методы профилактики.

С древних времён в Индии и Китае практиковалась инокуляция — прививание здоровых людей жидкостью из пузырьков больных лёгкой формой натуральной оспы. Недостатком инокуляции являлось то, что, несмотря на меньшую патогенность вируса (лат. Variola minor), он всё же иногда вызывал смертельные случаи. Кроме того, случалось, что по ошибке инокулировался высоко патогенный вирус.

Индия

Не исключено, что традиция вакцинации возникла в Индии в 1000 г. н. э.. Упоминание о вариоляции в аюрведическом тексте Sact’eya Grantham было отмечено французским учёным Анри Мари Гуссоном в журнале Dictionaire des sciences médicales. Однако идея о том, что инокуляция возникла в Индии, была поставлена под сомнение, поскольку лишь немногие из древних санскритских медицинских текстов описывали процесс инокуляции.

Китай

Самые ранние сведения о практике инокуляции оспы в Китае восходят к X веку. Старейшее документированное использование вариоляции относится так же к Китаю: в XV веке применялся метод «носовой инсуффляции», то есть вдыхания ноздрями порошкообразного материала оспы (обычно струпьев). Различные методы инсуффляции применялись в течение XVI и XVII веков в Китае:60. Два доклада о китайской практике прививания были сделаны Королевским обществом в Лондоне в 1700 году; их представили доктор Мартин Листер, получивший отчёт сотрудника Ост-Индской компании, дислоцированной в Китае, и доктор Клоптон Гаверс. Документы об учёте прививок против оспы в Китае сохранились с конца X века и, как сообщается, они широко практиковались в Китае в период правления императора Лунцина (1567—1572) во время династии Мин (1368—1644).

Европа

Греческие врачи Эммануэль Тимонис (1669—1720) с острова Хиос и Яков Пиларинос (1659—1718) из Цефалонии практиковали прививание от оспы в Константинополе в начале XVIII века и опубликовали свою работу в «Философских трудах Королевского общества» в 1714 году. Этот вид инокуляции и другие формы вариоляции были введены в Англии Леди Монтегю, известной английской писательницей и путешественницей, женой английского посла в Стамбуле в период с 1716 по 1718 годы, который едва не умер от оспы в юности и сильно пострадал от неё. Прививка была принята как в Англии, так и в Америке почти за полвека до знаменитой вакцины Дженнера 1796 года, но уровень смертности от этого метода составлял около 2 %, потому он использовался в основном во время опасных вспышек заболевания и оставался спорным.

В XVIII веке заметили, что люди, которые пострадали от менее вирулентной коровьей оспы, оказывались невосприимчивыми к натуральной оспе. Первое записанное использование этой идеи осуществлено фермером Бенджамином Джести (Benjamin Jesty) в деревне Йетминстер (англ.) графства Дорсет, который сам перенёс заболевание и заразил им собственную семью в 1774 году, потому его сыновья впоследствии не заболели даже умеренным вариантом оспы, когда их инокулировали в 1789 году. В 1791 году Питер Плетт (Peter Plett) из Киля в герцогстве Гольштейн-Глюкштадт (ныне Германия) инокулировал троих детей.

14 мая 1796 года Эдвард Дженнер проверил свою гипотезу, привив Джеймса Фиппса, восьмилетнего сына своего садовника. По тем временам это был революционный эксперимент: он привил коровью оспу мальчику и доказал, что тот стал невосприимчивым к натуральной оспе — последующие попытки (более двадцати) заразить мальчика человеческой оспой оказались безуспешными. Он соскрёб гной с пузырьков оспы на руках Сары Нелмс, доярки, которая заразилась коровьей оспой от коровы по имени Блоссом, и втёр его в две царапины на руке здорового ребёнка. Шкура той коровы теперь висит на стене медицинской школы Святого Георгия (теперь в Тутинге, южном районе Лондона). Фиппс был 17-м случаем, описанным в первой статье Дженнера о вакцинации. Дженнер не мог поставить этот эксперимент на себе, так как знал, что сам он давно невосприимчив к натуральной оспе.

В 1798 году Дженнер опубликовал статью «An Inquiry into the Causes and Effects of the Variolae Vacciniae», в которой впервые использовал термин «вакцинация» и вызвал всеобщий интерес. Он различал «истинную» и «ложную» коровью оспу (которая не давала желаемого эффекта) и разработал метод «рука-рука» для распространения вакцины из пустулы вакцинированного человека. Ранние попытки проверить эффект вакцинации омрачались случаями заражения оспой, но, несмотря на противоречия в медицинских кругах и религиозное противостояние применению материалов от животных, к 1801 году его доклад был переведён на шесть языков, а вакцинированы были более 100 000 человек. Второе поколение вакцин введено в 1880-х годах Луи Пастером, который разработал вакцины от куриной холеры и сибирской язвы новым методом, то есть используя ослабленные микроорганизмы. Вакцины конца XIX века считались уже вопросом национального престижа. Появились законы об обязательной вакцинации.

С тех пор кампании по вакцинации распространялись по всему миру, иногда они устанавливались законами или правилами («Акты о вакцинации» в Великобритании, 1840—1907 годы). Вакцины начали использоваться против самых разных заболеваний. Луи Пастер развил свою технику в течение XIX века, расширяя её использование для ослабления агентов, вызывающих сибирскую язву и бешенство. Метод, используемый Пастером, повреждал микроорганизмы, потому они теряли способность заражать, но прививка ими, хоть и не защищала от болезни полностью, то, в случае заражения, делала заболевание лёгким. Пастер, отдавая долг первооткрывателю Эдварду Дженнеру, также назвал открытый им способ предупреждения инфекционной болезни вакцинацией, хотя никакого отношения к коровьей оспе его ослабленные бактерии не имели.

6 июля 1885 года в лабораторию Луи Пастера доставили 9-летнего мальчика, который был сильно искусан бешеной собакой и считался безнадёжным. Пастер в то время заканчивал разработку вакцины от бешенства и это был шанс как для ребёнка, так и для испытателя. Вакцинация проходила под наблюдением публики и прессы. Ребёнок, чья гибель считалась предрешённой, поправился, а в лабораторию Пастера со всей Европы (в том числе из России) стали приезжать пострадавшие от бешеных животных.

Современность

Моррис Хиллеман (1919—2005) оказался самым плодовитым изобретателем вакцин: он разработал успешные вакцины против кори, эпидемического паротита, гепатита А, гепатита В, ветрянки, менингита, пневмонии и гемофильной палочки.

В наше время первым заболеванием, побеждённым вакцинацией, была натуральная оспа. Всемирная организация здравоохранения координировала эту глобальную работу по искоренению. Последний естественный случай оспы произошёл в Сомали в 1977 году. В 1988 году руководящий орган ВОЗ намеревался искоренить полиомиелит к 2000 году. Хотя цель и была упущена, искоренение уже очень близко. Поскольку вакцины стали более распространёнными, многие люди воспринимают их как должное. Однако для вакцин остаются неуловимыми многие важные заболевания, включая простой герпес, малярию, гонорею, гепатит C и ВИЧ.

Великобритания

Календарь прививок для детей в Соединённом Королевстве устанавливается Департаментом здравоохранения и Национальной службой здравоохранения и рекомендует комбинированные вакцины, если таковые имеются.

Некоторые дети могут получать вакцины в дополнение к перечисленным в таблице:

  • Вакцина БЦЖ дается при рождении «младенцам, которые с большей вероятностью вступают в контакт с туберкулёзом, чем население в целом».
  • Вакцина против гепатита В предоставляется при рождении «младенцам, чьи матери являются положительными по гепатиту B».

США

Побочные эффекты и осложнения

Побочные эффекты и осложнения отличаются для различных вакцин. Наиболее часто встречаются слабо выраженные реакции: умеренное повышение температуры тела, покраснение и болезненность в месте инъекции. У детей часто наблюдается продолжительный плач, ухудшение аппетита. Возможны аллергические реакции, в том числе (редко) — отёк Квинке, анафилактический шок. Некоторые живые вакцины способны вызывать реакции, напоминающие лёгкое течение заболеваний. Например, прививка от кори, краснухи и эпидемического паротита в 5 % случаев вызывает умеренную сыпь.

Отказы от вакцинации и антивакцинаторство

кто разработал метод прививок от многих болезней Джеймс Гилрей

. «Коровья оспа или Чудесное действие новой прививки!» (1802 г.).

Вскоре после разработки методов вакцинации появилось и движение антивакцинаторов, оспаривающих безопасность и эффективность прививок. Впрочем, как отмечают эксперты ВОЗ, большинство доводов антивакцинаторов не подтверждаются научными данными. Различные религиозные движения могут запрещать своим членам участвовать в вакцинации на основаниях, связанных с религией, и существуют политические группы, высказывающиеся против обязательного характера прививок как посягательства на личную свободу. В условиях, когда эффективная вакцинация позволяет победить болезнь и не допускать её распространения, внимание общественности переключается с самой болезни на возможные побочные эффекты вакцинации, в том числе статистически маловероятные и не имеющие доказанной причинно-следственной связи с вакцинацией.

Некоторые родители полагают, что вакцинация вызывает аутизм, хотя эта идея не получила научного подтверждения. В начале 2000-х годов необычайно широкое освещение в прессе получило опубликованное британским врачом Эндрю Уэйкфилдом исследование о предполагаемой связи конкретной вакцины MMR с расстройством аутистического спектра; другим ученым не удалось подтвердить результаты Уэйкфилда, а сам Уэйкфилд был обвинен в мошенничестве и в конечном счете исключён из реестра врачей Великобритании. Тем не менее, идея связи вакцинации вообще и аутизма закрепилась в массовом сознании: согласно опросу, проведенному в США в 2010 году, каждый четвертый родитель был согласен с утверждением «некоторые вакцины вызывают аутизм у здоровых детей». Схожие страхи вызывало использование в вакцинах консерванта тиомерсал на основе ртути. Доказательств системного токсического действия вакцинных консервантов — при применении в стандартных дозах — нет. Предполагаемая связь тиомерсала с развитием аутизма также не нашла подтверждения.

По подсчётам специалистов ПИПВЭ им. Чумакова, ежегодно около 11 % российских родителей отказываются прививать своих детей.

Вакцинация растений

Вакцинация растений— различные приёмы поверхностной обработки растений (обработка семян, опрыскивание растений вакцинами и т. п.).

Примечания

  1. ↑ Российская газета, 22 апреля 2013, В России началась неделя прививок
  2. ↑ Федеральный закон № 157-ФЗ. «Об иммунопрофилактике инфекционных болезней» (рус.) (17 сентября 1998). Проверено 23 октября 2018.
  3. ↑ Федеральный закон № 52-ФЗ. «О санитарно-эпидемиологическом благополучии населения» (рус.) (30 марта 1999). Проверено 23 октября 2018.
  4. ↑ Перечень работ, выполнение которых связано с высоким риском заболевания инфекционными болезнями и требует обязательного проведения профилактических прививок. Постановление Правительства РФ № 825 (рус.) (15 июля 1999). Проверено 23 октября 2018.
  5. ↑ Перечень поствакцинальных осложнений, вызванных профилактическими прививками, включенными в национальный календарь профилактических прививок, и профилактическими прививками по эпидемическим показаниям, дающих право гражданам на получение государственных единовременных пособий. Постановление Правительства РФ № 855 (рус.) (2 августа 1999). Проверено 23 октября 2018.
  6. Приказ Минздрава № 125н. «Об утверждении национального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям» (рус.). garant.ru (21 марта 2014). Проверено 5 ноября 2017.
  7. ↑ Санитарно-эпидемиологические правила СП 3.3.2342-08. «Обеспечение безопасности иммунизации» (рус.). garant.ru (3 марта 2008). Проверено 23 октября 2018.
  8. ↑ Санитарно-эпидемиологические правила СП 3.3.2367-08. «Организация иммунопрофилактики инфекционных болезней» (рус.). garant.ru (4 июня 2008). Проверено 23 октября 2018.
  9. ↑ Санитарно-эпидемиологические правила СП 3.1.2951-11. «Профилактика полиомиелита» (рус.) (28 июля 2011). Проверено 23 октября 2018.
  10. ↑ Санитарно-эпидемиологические правила СП 3.1.2.3114-13. «Профилактика туберкулёза» (рус.). Проверено 23 октября 2018.
  11. ↑ Санитарно-эпидемиологические правила СП 3.1.2.2512-09. Профилактика менингококковой инфекции (рус.) (doc) (18 мая 2009). Проверено 22 августа 2016.
  12. ↑ Санитарно-эпидемиологические правила СП 3.1.3525-18. «Профилактика ветряной оспы и опоясывающего лишая» (рус.) (5 февраля 2018). Проверено 2018-10-22 4.
  13. ↑ Санитарно-эпидемиологические правила СП 3.1.2.3113-13. «Профилактика столбняка» (22 октября 2013). Проверено 24 октября 2018.
  14. ↑ Санитарно-эпидемиологические правила СП 3.1.2.3162-14. Профилактика коклюша (рус.) (17 марта 2014). Проверено 24 октября 2018.
  15. ↑ Санитарно-эпидемиологические правила СП 3.1.2.3109-13. Профилактика дифтерии. Профилактика инфекционных заболеваний. Инфекции дыхательных путей (рус.) (9 октября 2013). Проверено 24 октября 2018.
  16. ↑ Санитарно-эпидемиологические правила СП 3.1.2952-11. «Профилактика кори, краснухи, эпидемического паротита» (рус.) (28 июля 2011). Проверено 24 октября 2018.
  17. Методические указания МУ 3.3.1.1095-02. Медицинские противопоказания к проведению профилактических прививок препаратами национального календаря прививок (рус.) (doc). rospotrebnadzor.ru (1 марта 2002). Проверено 23 октября 2018.
  18. ↑ Методические указания МУ 3.3.1.1123-02. Мониторинг поствакцинальных осложнений и их профилактика (рус.). Роспотребнадзор (26 мая 2002). Проверено 23 октября 2018.
  19. Методические указания МУ 3.3.1889-04. Порядок проведения профилактических прививок (рус.) (doc). Роспотребнадзор (4 марта 2004). Проверено 23 октября 2018.
  20. ↑ Федеральный закон «Об основах охраны здоровья граждан в Российской Федерации» от 21.11.2011 № 323-ФЗ. Статья 20 (рус.). Гарант (справочно-правовая система). Проверено 23 октября 2018.
  21. ↑ Прививку против ротавируса включат в национальный календарь с 2020 года (рус.). Информационное агентство ТАСС (1 ноября 2017). Проверено 5 ноября 2017. Архивировано 7 ноября 2017 года.
  22. ↑ Прививки от ветряной оспы и ротавируса станут обязательными с 2020 года (рус.). Информационное агентство РИА (25 мая 2018). Проверено 29 мая 2018.
  23. Департамент здравоохранения города Москвы. Об утверждении регионального календаря профилактических прививок и календаря профилактических прививок по эпидемическим показаниям. Приказ № 614 (рус.) (4 июля 2014). Проверено 23 октября 2018.
  24. Министерство здравоохранения Свердловской области. Об утверждении регионального календаря профилактических прививок Свердловской области. Приказ № 1245-п (рус.) (1 октября 2014). Проверено 23 октября 2018.
  25. Министерство здравоохранения Пермского края. Об утверждении регионального календаря профилактических прививок Пермского края. Приказ № СЭД-34-01-06-37 (рус.) (24 января 2018). Проверено 23 октября 2018.
  26. Министерство здравоохранения республики Алтай. Об утверждении регионального календаря профилактических прививок по эпидемическим показаниям на территории республики Алтай. Приказ № 86/64 (рус.) (27 апреля 2015). Проверено 23 октября 2018.
  27. Министерство здравоохранения Челябинской области. Об утверждении регионального календаря профилактических прививок Челябинской области. Приказ № 685 (рус.) (9 апреля 2018). Проверено 23 октября 2018.
  28. Macgowan DJ. = Report on the health of Wenchow for the half-year ended 31 March 1884. — Imperial Maritime Customs Medical Reports. — China, 1884. — Vol. 27. — P. 9—18.
  29. Needham, J. = China and the origins of immunology. — Centre of Asian Studies Occasional Papers and Monographs. — Centre of Asian Studies, University of Hong Kong, 1980. — Vol. 41.
  30. ↑ Adelon et al.; «inoculation» Dictionnaire des sciences médicales, vol. XXV, C.L.F. Panckoucke, Paris, 1812—1822, lvi (1818)
  31. ↑ Wujastyk, Dominik; (1995) «Medicine in India, » in Oriental Medicine: An Illustrated Guide to the Asian Arts of Healing, 19-38, edited by Serindia Publications, London ISBN 0-906026-36-9. p. 29.
  32. ↑ Needham, Joseph. (2000). Science and Civilization in China: Volume 6, Biology and Biological Technology, Part 6, Medicine. Cambridge: Cambridge University Press. p.154
  33. Williams, Gareth. Angel of Death. — Basingstoke : Palgrave Macmillan, 2010. — ISBN 978-0230274716.
  34. Silverstein, Arthur M. A History of Immunology. — 2nd. — Academic Press, 2009. — P. 293. — ISBN 9780080919461..
  35. ↑ Needham, Joseph; (2000) Science and Civilization in China: Volume 6, Biology and Biological Technology, Part 6, Medicine, Cambridge University Press, Cambridge, page 134
  36. Karaberopoulos, Demetrios. The invention and the first application of the vaccination belongs to the Greek Doctors Emmanuel Timonis and Jacob Pylarinos and not to Dr. Edward Jenner.. karaberopoulos.gr (2006). Проверено 13 августа 2018.
  37. Timonius, Emanuel; Woodward, John. An account or history of the procuring the small-pox by incision or inoculation as it has for some time been practiced at Constantinople // Philosophical Transactions of the Royal Society : журнал. — 1714–1716. — Т. 29, № 339. — С. 72—82. — DOI:10.1098/rstl.1714.0010. Архивировано 12 сентября 2018 года.
  38. Jacobum Pylarinum, Venetum, M. D. Nova et tuta Variolas excitandi per transplantationem, nuper inventa et in usum tracta // Philosophical Transactions of the Royal Society : журнал. — 1714–1716. — Т. 29, № 339. — С. 393—399. — DOI:10.1098/rstl.1714.0047. Архивировано 12 сентября 2018 года.
  39. Henricy, Anthony (ed.). Lady Mary Wortley Montagu, Letters of the Right Honourable Lady Mary Wortley Montagu:Written During her Travels in Europe, Asia and Africa. — 1796. — Vol. 1. — P. 167–169. or see
  40. ↑ The Myth of the Medical Breakthrough: Smallpox, Vaccination, and Jenner Reconsidered (англ.) // International Journal of Infectious Diseases. — 1998. — July (no. 3 (1)). — P. 54–60. — DOI:10.1016/s1201-9712(98)90096-0. — PMID 9831677.
  41. Donald R. Hopkins. The Greatest Killer: Smallpox in History. — University of Chicago Press, 2002. — С. 80. — 426 с. — ISBN 9780226351681.
  42. ↑ Edward Jenner & Smallpox. The Edward Jenner Museum. Проверено 13 июля 2009. Архивировано 28 июня 2009 года.
  43. Джон Кейжу. Открытия, которые изменили мир: Как 10 величайших открытий в медицине спасли миллионы жизней и изменили наше видение мира. — Манн, Иванов и Фербер, 2015. — С. 168—169. — 363 с. — ISBN 9785000578698.
  44. Gross C. P., Sepkowitz K. A. The myth of the medical breakthrough: smallpox, vaccination, and Jenner reconsidered. (англ.) // International Journal Of Infectious Diseases : IJID : Official Publication Of The International Society For Infectious Diseases. — 1998. — July (vol. 3, no. 1). — P. 54—60. — PMID 9831677.
  45. ↑ TRANSLATION OF AN Address ON THE GERM THEORY // The Lancet. — 1881. — Vol. 118. — P. 271—272. — ISSN 01406736. — DOI:10.1016/s0140-6736(02)35739-8.
  46. ↑ Первые опыты вакцинации. Специалисты о прививках (рус.). yaprivit.ru. Проверено 10 ноября 2017.
  47. Offit, Paul A. Vaccinated: One Man’s Quest to Defeat the World’s Deadliest Diseases. — Washington, DC : Smithsonian, 2007. — ISBN 0-06-122796-X.
  48. ↑ ВОЗ открывает памятник в ознаменование 30-й годовщины ликвидации оспы. Сообщение ВОЗ для СМИ (рус.). ВОЗ (17 мая 2010). Проверено 10 ноября 2017.
  49. ↑ Полиомиелит. Начало конца (рус.) (pdf). ВОЗ (2007). Проверено 10 ноября 2017.
  50. Stern A. M., Markel H. The history of vaccines and immunization: familiar patterns, new challenges. (англ.) // Health Affairs (Project Hope). — 2005. — May (vol. 24, no. 3). — P. 611—621. — DOI:10.1377/hlthaff.24.3.611. — PMID 15886151.
  51. Baarda Benjamin I., Sikora Aleksandra E. Proteomics of Neisseria gonorrhoeae: the treasure hunt for countermeasures against an old disease // Frontiers in Microbiology. — 2015. — Vol. 6. — ISSN 1664-302X. — DOI:10.3389/fmicb.2015.01190.
  52. ↑ Recommended Immunization Schedule for Children and Adolescents Aged 18 Years or Younger, United States, 2018. CDC. Проверено 6 мая 2018.
  53. ↑ Recommended Immunization Schedule for Adults Aged 19 Years or Older, United States, 2018. CDC. Проверено 6 мая 2018.
  54. ↑ Противопоказания к вакцинации (рус.) (pdf). ФГАУ «Национальный научно-практический центр здоровья детей». Министерство здравоохранения Российской Федерации (2017). Проверено 15 августа 2018.
  55. ↑ Vaccines: Vac-Gen/Side Effects (en-us). www.cdc.gov (12 июля 2018). Проверено 13 августа 2018.
  56. (2002) «Anti-vaccinationists past and present». BMJ (7361): 430–432. DOI:10.1136/bmj.325.7361.430. PMID 12193361.
  57. Parry Jane. От паникёрства вакцины нет (рус.). Бюллетень Всемирной организации здравоохранения (6 июня 2008). Проверено 14 августа 2015. Архивировано 20 октября 2014 года.
  58. ↑ (2007) «Adverse events following immunization: perception and evidence». Current Opinion in Infectious Diseases (3): 237–246. DOI:10.1097/QCO.0b013e32811ebfb0. PMID 17471032.
  59. ↑ Gross L (2009). «A broken trust: lessons from the vaccine–autism wars». PLoS Biol (5): e1000114. DOI:10.1371/journal.pbio.1000114. PMID 19478850.
  60. Jain A. et al. Autism Occurrence by MMR Vaccine Status Among US Children With Older Siblings With and Without Autism (англ.) // JAMA : журнал. — 2015. — Vol. 313, no. 15. — P. 1534—1540. — ISSN 0098-7484. — DOI:10.1001/jama.2015.3077.
  61. the CNN Wire Staff. Retracted autism study an ‘elaborate fraud,’ British journal finds, CNN.com (6 января 2011). Проверено 26 апреля 2013.
  62. Triggle, Nick. MMR doctor struck off register, BBC News (24 May 2010). Проверено 24 мая 2010.
  63. Flaherty D. K. The vaccine-autism connection: a public health crisis caused by unethical medical practices and fraudulent science. (англ.) // The Annals Of Pharmacotherapy. — 2011. — October (vol. 45, no. 10). — P. 1302—1304. — DOI:10.1345/aph.1Q318. — PMID 21917556.
  64. Carla K. Johnson. 1 in 4 parents believes vaccine-autism link (англ.). medicalxpress.com. Science X (1 March 2010). Проверено 27 мая 2018.
  65. Sugarman S. D. Cases in vaccine court—legal battles over vaccines and autism. (англ.) // The New England Journal Of Medicine. — 2007. — 27 September (vol. 357, no. 13). — P. 1275—1277. — DOI:10.1056/NEJMp078168. — PMID 17898095.
  66. Jain A. et al. Autism Occurrence by MMR Vaccine Status Among US Children With Older Siblings With and Without Autism (англ.) // JAMA : журнал. — 2015. — Vol. 313, no. 15. — P. 1534—1540. — ISSN 0098-7484. — DOI:10.1001/jama.2015.3077.
  67. ↑ Екатерина Макарова «Совет Федерации предложил наказывать родителей за отказ прививать своих детей», Vademecum, 28 мая 2015 года

Литература

  • Коцын М. Б.,. Прививки предохранительные и лечебные // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Джон Кейжу. Открытия, которые изменили мир: Как 10 величайших открытий в медицине спасли миллионы жизней и изменили наше видение мира. — Манн, Иванов и Фербер, 2015. — 368 с. — ISBN 5000578694.

Ссылки

  • Пётр Старокадомский; Антон Чугунов. Вакцины в вопросах и ответах (рус.). biomolecula.ru (25 мая 2011). Проверено 23 октября 2018.
  • Мониторинг иммунизации на сайте ВОЗ
  • Денис Яцутко; Сергей Марков. О пользе прививок. Наглядная инфографика (рус.). XXII ВЕК (3 марта 2015). Проверено 5 ноября 2017.
  • Прививки до и во время беременности. Прививки от краснухи, кори, свинки при подготовке к беременности (рус.). gynecologia.info. Проверено 5 ноября 2017.
  • Вакцинация растений. Зооинженерный факультет МСХА. Проверено 3 декабря 2017.

Вакцинация — одна из самых горячих тем в спорах врачей и пациентов. Непонимание, слухи, мифы — все это заставляет людей бояться данной процедуры, что нередко приводит к печальным последствиям. Этой статьей «Биомолекула» начинает спецпроект о вакцинации и о врагах, которые с ее помощью успешно загнаны в подполье. И начнем мы с истории первых побед и горьких поражений, которые встречались на пути становления современной вакцинопрофилактики.

кто разработал метод прививок от многих болезней Вакцинация кто разработал метод прививок от многих болезней

Изобретение вакцин кардинально изменило жизнь человечества. Многие болезни, уносившие тысячи, а то и миллионы жизней ежегодно, теперь практически не встречаются. В этом спецпроекте мы не только рассказываем об истории возникновения вакцин, общих принципах их разработки и роли вакцинопрофилактики в современном здравоохранении (этому посвящены первые три статьи), но и подробно говорим о каждой вакцине, включенной в Национальный календарь прививок, а также вакцинах против гриппа и вируса папилломы человека. Вы узнаете о том, что собой представляет каждый из возбудителей болезней, какие существуют варианты вакцин и чем они различаются между собой, затронем тему поствакцинальных осложнений и эффективности вакцин.

Для соблюдения объективности мы пригласили стать кураторами спецпроекта Александра Соломоновича Апта — доктора биологических наук, профессора МГУ, заведующего лабораторией иммуногенетики Института туберкулеза (Москва), — а также Сусанну Михайловну Харит — доктора медицинских наук, профессора, руководителя отдела профилактики НИИ детских инфекций (Санкт-Петербург).

Генеральный партнер спецпроекта — Zimin Foundation.

Партнер публикации этой статьи — компания «ИНВИТРО». «ИНВИТРО» — это крупнейшая частная медицинская лаборатория, специализирующаяся на проведении лабораторных анализов и функциональной диагностики, включающая магнитно-резонансную томографию, маммо- и рентгенографию, УЗИ и другие.

Как вы думаете, какая сила в истории человечества была самой разрушительной и непреодолимой? Какое, по-вашему, явление природы было способно опустошать города и страны, уничтожать целые цивилизации?

Такая сила не могла не оставить следа в фольклоре и религиозных текстах тех, кто выжил под ее натиском. Если на свете было что-то, что могло влиять на течение истории, то древние люди резонно могли предположить, что именно оно рано или поздно станет орудием, с помощью которого божество уничтожит созданный им мир.

В христианской религиозной традиции есть текст, где все эти силы перечислены кратко и ёмко — «Апокалипсис». Действительно, в образе Всадников воплощены те явления, которые способны неожиданно настигнуть человека и разрушить как его самого, так и мир вокруг (рис. 1). Всадников четверо: это Голод, Война, Мор и Смерть, следующая за первыми тремя.

кто разработал метод прививок от многих болезней

Рисунок 1. В.М. Васнецов, «Воины Апокалипсиса» (1887). Справа налево: Мор, Война, Голод и Смерть.

«Википедия»

Насильственная или голодная смерть — давняя угроза человечеству. По мере развития нашего вида, мы образовывали всё бóльшие сообщества, чтобы избежать ее, и в какой-то момент начали строить города и селиться в них. Это давало защиту от диких зверей и соседей, а также позволяло наладить эффективную экономику, что защищало от голода.

кто разработал метод прививок от многих болезней

Рисунок 2. Обложка французского журнала. Иллюстрация посвящена эпидемии холеры, поразившей турецкую армию.

Wikimedia

Но в городах, с их плотностью населения и гигиеническими проблемами, нас ждал третий всадник. Мор, великий опустошитель. Эпидемии не раз и не два меняли политическую карту мира. Не одна империя, включая великую Римскую, пала, когда в нее, ослабленную чумой, пришли враги, которых она успешно отражала до болезни . Оспа, столь широко распространенная в Европе, была неизвестна в Америках, а по пришествии испанцев стала союзником конкистадоров в деле подчинения племен инков и ацтеков , . Союзником куда более верным и жестоким, чем меч или крест. Ее вообще любили использовать в качестве оружия как в Европе, забрасывая осажденные крепости телами жертв болезни с помощью катапульт , так и в Америке, раздавая под видом благотворительности непокорным коренным племенам одеяла, которыми ранее пользовались больные . Холера также внесла свои коррективы в ход многих политических процессов, уничтожая целые армии на марше (рис. 2) и осажденные города .

Сегодня, однако, люди уже не помнят, каково это — жить в пораженном чумой городе, где каждый день умирают тысячи людей, чудом уцелевшие бегут без оглядки, а мародеры наживаются на ограблении бежавших или умерших хозяев пустых домов. Мор, каким бы страшным он ни казался нашим предкам, практически изгнан из современного мира. За пять лет с 2010 по 2015 год чумой в мире заболели чуть более 3000 человек, а последняя смерть от оспы зарегистрирована в 1978 году.

Это стало возможным благодаря научным открытиям, одним из важнейших следствий которых является вакцинация. Семь лет назад на «Биомолекуле» вышла статья «Вакцины в вопросах и ответах» , которая с тех пор уверенно возглавляет топ-10 наиболее читаемых материалов сайта. Но сейчас мы решили, что представленную информацию нужно не только освежить, но и расширить, и поэтому начинаем большой спецпроект, посвященный вакцинации. В этой — вводной — статье мы последовательно рассмотрим, как люди победили одного из самых сильных своих врагов его же оружием.

Эмпирические знания

До возникновения современной науки борьба с таким страшным врагом, как эпидемии, имела эмпирический характер. За столетия человеческого развития общество сумело собрать массу фактов о том, как возникал и распространялся мор. Поначалу разрозненные факты к XIX веку оформились в полноценную, почти научную теорию миазмов, или «плохого воздуха». Исследователи еще со времен античности и вплоть до Нового времени полагали, что причиной болезней являлись испарения, изначально возникающие из почвы и нечистот, а впоследствии распространяемые заболевшим человеком. Любой, находящийся рядом с источником таких испарений, подвергался риску заболеть.

Теория, на каких бы неправильных основаниях она ни стояла, не только призвана объяснить явление, но и указать, как с ним бороться. Для оздоровления вдыхаемого воздуха средневековые врачи начали использовать специальные защитные одежды и маски с характерными клювами, набитыми лекарственными травами. Это одеяние и сформировало облик чумного доктора, знакомый каждому, кто сталкивался с описанием средневековой Европы в фильмах или книгах (рис. 3).

Другим следствием теории миазмов было то, что от болезни можно оградиться, сбежать, поскольку дурной воздух возникал в местах скопления людей. Потому люди быстро научились бежать от болезни, едва о ней заслышав. Сюжет произведения «Декамерон» Джованни Бокаччо завязан вокруг историй, которые рассказывают друг другу пытающиеся скоротать время молодые дворяне, сбежавшие из пораженной чумой Флоренции.

Ну и наконец, теория миазмов предлагала еще один способ борьбы с болезнью — карантин. Место, где отмечали начало заболевания, изолировалось от окружающих территорий. Никто не мог его покинуть, пока болезнь не заканчивалась. Именно из-за чумного карантина в Вероне гонец не смог своевременно доставить письмо Джульетты Ромео, в результате чего несчастный юноша уверился в гибели возлюбленной и принял яд.

Очевидно, что инфекционные заболевания и связанные с ними эпидемии были причиной очень сильного страха и служили важной направляющей силой развития общества (рис. 4). Как усилия образованных людей, так и народная мысль были направлены на поиск защиты от инфекций, уносивших столько жизней и так непредсказуемо влиявших как на отдельные судьбы, так и на целые государства.

кто разработал метод прививок от многих болезней

Рисунок 4. Самые опустошительные эпидемии прошлого.

иллюстрация Ирины Ефремовой

Защита через заболевание

Еще в древности люди начали замечать, что для некоторых заболеваний свойственно однократное течение: человек, единожды переболевший такой болезнью, больше никогда ей не болел. Сейчас такими заболеваниями мы считаем ветрянку и краснуху, а раньше к ним относилась, например, и оспа.

Эта болезнь была известна со времен античности. Заболевание поражало кожу, на которой появлялись характерные пузыри. Смертность от оспы была довольно высокой, до 40% . Смерть, как правило, была следствием интоксикации организма. Выжившие же навсегда оставались изуродованы оспенными рубцами, покрывавшими всю кожу.

Еще в древности люди заметили, что отмеченные этими рубцами никогда не заболевают во второй раз. Это было очень удобно для медицинских целей — во времена эпидемий такие люди использовались в лазаретах в качестве младшего медицинского персонала и могли бесстрашно помогать зараженным.

На Западе в Средние века оспа была столь распространена, что некоторые исследователи полагали, что каждый человек обречен хотя бы раз ей заболеть . Оспенные рубцы покрывали кожу людей всех сословий, от простых крестьян до членов королевских семей . На Востоке же был дополнительный нюанс, стимулирующий общество к поиску защиты от оспы. Если на Западе наличие или отсутствие оспенных рубцов мало влияло на экономическую составляющую жизни человека, то в арабских странах процветали гаремы и торговля рабами. Рябой раб или тем более предназначенная для гаремной жизни девушка несомненно теряли свою ценность и приносили убытки своей семье или хозяину. Потому неудивительно, что первые медицинские процедуры, направленные на защиту от оспы, пришли именно с Востока.

Никто не знает, где впервые придумали вариоляцию — намеренное заражение здорового человека оспой путем введения содержимого оспенного пузырька под кожу при помощи тонкого ножа. В Европу она пришла через письма, а потом и личную инициативу леди Монтак, путешествовавшей по восточным странам и обнаружившей эту процедуру в Стамбуле в 1715 году. Там же она вариолировала своего пятилетнего сына, а по приезде в Англию убедила привить оспу своей четырехлетней дочери. Впоследствии она активно агитировала за вариоляцию в Европе и ее усилия привели к повсеместному внедрению этого метода .

Несомненно, турки не были изобретателями такого подхода, хоть и активно применяли его . Вариоляция давно была известна в Индии и Китае, ее применяли и на Кавказе — везде, где красота могла быть прибыльным товаром. В Европе и Америке процедура получила поддержку власть имущих. В России ей подверглись императрица Екатерина Вторая и вся ее семья и двор . Джордж Вашингтон в ходе войны за независимость США от Англии столкнулся с тем, кто его армия куда сильнее страдала от оспы, нежели вариолированная армия Британии. В ходе одной из зимовок он привил оспу всем своим солдатам и этим защитил армию от заболевания , .

Величайшее открытие

При всех ее плюсах, вариоляция несла в себе и опасность. Смертность среди людей, которым привили оспу, составляла около 2%. Это несомненно меньше, чем смертность от собственно заболевания, однако оспой можно было и не заболеть, а вариоляция представляла собой непосредственную угрозу. Нужна была эффективная, но вместе с тем более безопасная замена вариоляции.

Вопреки расхожему мнению, Эдвард Дженнер не был первым, кто заметил, что люди, работавшие с крупным скотом (скотоводы, жокеи, кавалеристы и так далее) реже болеют оспой, чем остальные. Первенство открытия затерялось во тьме веков, но ко времени открытия Дженнера это было довольно распространенным знанием. В частности, сам Дженнер узнал об этом от своего друга, врача Джона Фюстера. Также мы знаем, что отнюдь не Дженнер первым применил это знание на практике. Среди нескольких известных случаев, когда вариоляцию произвели не человеческой, а коровьей оспой, самым известным является эксперимент британского фермера Бенджамина Джести в 1774 году, когда он таким способом защитил от оспы свою жену и сыновей. Однако, как неоднократно показывала история, важен не тот, кто открыл, а тот, кто рассказал об этом миру. Достоверно неизвестно, знал ли исследователь об опыте Джести, да это и не важно, так как именно деятельность Дженнера принесла вакцинации известность и спасла мир от страшнейшего заболевания — оспы.

По современным меркам эксперимент, проведенный Дженнером, был этически совершенно неприемлем. Узнав от своего друга Джона Фюстера о том, что доярки практически не болеют оспой, Дженнер потратил несколько лет, чтобы убедиться в верности сказанного, а после решился на проверку. Это историческое событие случилось в 1796 году.

Дженнер использовал в эксперименте двух людей — доярку Сару Нелмс и восьмилетнего мальчика Джеймса Фиппса. У Нелмс незадолго до этого развилась коровья оспа — у ее рогатых подопечных возникла эта болезнь: их кожа, включая вымя, покрылась некоторым количеством волдырей. В ходе работы их содержимое попало на натруженные руки доярки, на которых также выступили характерные вздутия.

Дальнейшее описано в огромном множестве статей в невероятных подробностях , . Дженнер взрезал один из волдырей на руке крестьянки тонким ножом так, чтобы тот оказался весь покрыт содержащейся в нем жидкостью. Этим ножом врач проткнул кожу молодого Фиппса в нескольких местах на плече (рис. 5). Через несколько дней у мальчика развилась лихорадка, а на месте введения появились волдыри. По прошествии нескольких дней симптомы ушли. Через два месяца Дженнер снова ввел мальчику содержимое волдырей от другой доярки и не увидел симптомов, из чего заключил, что мальчик получил защиту от оспы.

Дженнер сообщил о своем открытии в Британское Королевское Общество, однако его статью отклонили. Впоследствии он провел несколько аналогичных экспериментов и за собственные деньги опубликовал по их результатам брошюру под названием An Inquiry into the Causes and Effects of the Variolae Vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire and Known by the Name of Cow Pox («О возникновении и эффектах болезни Variolae Vaccinae („оспы коров“, лат., прим. автора), болезни, обнаруженной в некоторых западных областях Англии, а частности Глостершире, и известной под названием коровьей оспы»).

Как это обычно бывает, общество не сразу приняло новую идею: выход брошюры остался незамеченным. Но Дженнер не сдавался. В 1798 году он переехал в Лондон, где начал искать добровольцев для проведения вакцинации — так он назвал новую процедуру в честь использованной болезни Variolae Vaccinae. Таким образом, с латинского слово «вакцинация» было бы правильнее всего перевести как «окоровливание». За год ему ни разу не удалось найти желающих «окоровиться». Однако в следующем 1799 году Дженнеру улыбнулась удача — он сумел убедить нескольких врачей в эффективности придуманной процедуры, и они начали применять ее у своих пациентов с неизменным успехом.

Вакцинация взорвала медицинский мир Британии, а затем Европы и Нового Света. К 1800 году она добралась до США, где президент Томас Джефферсон тут же организовал национальную программу вакцинации. Европа прививалась коровьей оспой тотально. Сопротивление новой практике было, но лишь среди слабо образованных и суеверных низов общества. Обыватель боялся «окоровливаться» (рис. 6).

кто разработал метод прививок от многих болезней

Рисунок 6. Карикатура на Дженнера и вакцинацию образца XIX века.

«Википедия»

Для властей, однако, преимущества вакцинации были более чем очевидны. Труды Дженнера перепечатывались на всех европейских языках. Уже в 1803 году, через пять лет после публикации эпохальной брошюры, испанский король Карл IV организовал «филантропическую экспедицию», участники которой должны были доставить вакцину в южноамериканские колонии . Эпоха битв с индейцами давно закончилась, а завезенная европейцами оспа все продолжала уносить миллионы жизней. Для Карла IV это была и личная битва — в 1794 году оспа унесла его дочь, инфанту Марию Терезу.

Но как доставить вакцину так далеко? Холодильники еще не изобрели, а содержимое пузырьков больных недолго сохраняло свои свойства. Тогда и была придумана гениальная и ужасающая для современного человека схема, принесшая этой экспедиции успех. По совету королевского врача начальник экспедиции Франциск Жавьер де Бальми взял в плавание 22 мальчика-сироты из испанского приюта и целую медицинскую команду. Вместе с детьми отправилась настоятельница приюта города Ла-Корунья, оказавшая всемерную помощь и часто упоминаемая де Бальми в его записях.

Еще в Испании двух мальчиков привили коровьей оспой. По мере продвижения каравеллы, де Бальми организовал живую цепь — оспа передавалась от больных мальчиков здоровым попарно, чтобы вакцина не пропала, если по случайному стечению обстоятельств у получающего вакцину мальчика не разовьются волдыри. Экспедиция успешно достигла Америки и посетила множество городов на островах, побережье и в глубинах континента. Первым делом прививали не людей, а коров, — это позволяло создать пул вакцины, который затем поддерживался местными католическими монастырями и миссиями. Де Бальми лично переправил вакцину с атлантического побережья через джунгли на берег Тихого океана, а затем завершил кругосветку, доставив вакцину на острова Океании и побережье Юго-Восточной Азии (рис. 7).

Рисунок 7. Схема экспедиции Де Бальми, принесшего вакцину в Южную Америку и Карибское море всего через 5 лет после признания открытия Дженнера.

Pinterest

Вакцинация быстро распространилась по земному шару. С переменным успехом она сумела сначала предотвратить пандемии оспы по всему миру, а затем и полностью уничтожить болезнь . Последний документированный случай оспы зафиксирован ВОЗ в 1978 году, а в 1980 было объявлено об искоренении этой болезни.

Последняя жертва оспы

Врачи боролись с оспой несколько сотен лет, и к середине XX века уверились в скорой победе над этим страшным заболеванием. К концу 70-х годов в развитых странах эту болезнь не видели уже несколько десятилетий. Дети и взрослые были почти повсеместно привиты, а сама оспа свирепствовала лишь на труднодоступных участках Африки и Азии. В таких условиях немудрено было расслабиться и чуть ослабить контроль, что не замедлило привести к фатальным последствиям.

В то время на медицинском факультете Бирмингемского университета в Великобритании группа под руководством профессора Генри Бедсона изучала вирус оспы. Над их лабораторией располагалась комната, где работала штатный фотограф университета Джанет Паркер (рис. 8). Как и почти все ее сверстники, она в свое время привилась от оспы. Потому, когда 11 августа 1978 года женщина обратилась в клинику с жалобами на недомогание и ломоту в мышцах, врачи ничего не заподозрили. Выступившие на ее коже волдыри посчитали обычной сыпью. Однако они очень быстро покрыли все ее тело, включая кожу стоп и ладоней. Тут-то врачи и спохватились, поставив страшный диагноз — Variola major (натуральная оспа).

Тут же развернулась настоящая охота на вирус. Всех, кто в последние недели контактировал с Джанет и контактировал с контактировавшими (всего около 260 человек), поместили в карантин. Один из ее коллег незадолго до вспышки улетел в США, где его разыскали местные службы и также изолировали. Повод для паники у американцев был: к тому моменту в США уже шесть лет не прививали грудных младенцев, так как оспа на территории страны считалась искорененной.

Подтверждать диагноз Джанет пригласили местного эксперта по болезни — того самого профессора Генри Бедсона. Он взял на анализ немного жидкости из волдырей и подтвердил — перед ним была оспа. Откуда же она могла взяться? Ответ мог быть только один — каким-то образом она просочилась из хранилищ лаборатории самого Бедсона и попала в вентиляцию. Этот случай вызвал волну общественного возмущения и ряд расследований, которые привели к разработке новых правил работы с опасными инфекционными агентами в Великобритании и других странах.

Ровно через месяц после обращения в больницу, 11 сентября 1978 года, Джанет Паркер скончалась от оспы, став на сегодняшний день последней жертвой этой болезни. К сожалению, в ее случае вакцина не помогла — то ли за долгие годы упала напряженность иммунитета, то ли доза полученного Джанет вируса была слишком велика (информации по этому поводу, к сожалению, довольно мало). Среди всех людей, помещенных в карантин, заболела только ее мать, но сумела справиться с болезнью. Однако эта история унесла жизнь не только девушки-фотографа. За несколько дней до смерти Джанет, 5 сентября, от сердечного приступа умер ее престарелый отец, находившийся вместе с женой в карантине. А еще раньше, 1 сентября, профессора Бедсона нашли в саду его дома с перерезанным горлом. Спустя несколько дней он умер, не приходя в сознание. В предсмертной записке ученый сообщал, что решил уйти из жизни, так как «подвел доверие коллег и друзей».

Постулаты Коха и туберкулез

Оспа была крайне удобным заболеванием с точки зрения вакцинации. Больной как бы покрывался естественными резервуарами с возбудителем — бери и вакцинируй. Но что делать с другими заболеваниями: холерой, чумой, полиомиелитом? Об истинных причинах болезней еще никто не знал. О существовании микроорганизмов мир узнал еще в 1676 году из работ изобретателя самых совершенных оптических микроскопов, голландского лавочника и члена Королевского общества Великобритании Энтони ван Левенгука (о нем и о его открытиях мы уже рассказывали в статье «12 методов в картинках: микроскопия» ). Он же высказал смелую гипотезу, что открытая им жизнь может вызывать заболевания, однако ее не услышали .

Все изменилось, когда за дело взялись двое выдающихся ученых XIX века — Луи Пастер и Роберт Кох . Пастер сумел доказать отсутствие самозарождения жизни и параллельно открыл один из способов обеззараживания растворов, который мы до сих пор применяем — пастеризацию. Кроме того, он изучил основные инфекционные заболевания и пришел к выводу, что их вызывают микроорганизмы. Предметом его особого интереса были сибирская язва и ее возбудитель, Bacillus anthracis.

Современник Пастера Роберт Кох совершил настоящую революцию в микробиологии, причем даже не одну. К примеру, он придумал способ культивирования на твердых средах. До него бактерий выращивали в растворах, а это было неудобно и часто не давало нужных результатов. Кох предложил использовать в качестве подложки желе из агара или желатина. Метод прижился и используется в микробиологии до сих пор. Одним из важнейших его преимуществ является возможность получения так называемых чистых культур (штаммов) — сообществ микроорганизмов, состоящих из потомков одной клетки.

Новая методология позволила Коху уточнить микробиологическую теорию инфекций. Он сумел вырастить чистые культуры холерного вибриона, сибиреязвенной бациллы и многих других организмов. В 1905 году его заслуги отметили незадолго до этого учрежденной Нобелевской премией по физиологии и медицине — «за открытие возбудителя туберкулеза» .

Свое понимание природы инфекций Кох выразил в четырех постулатах, которые до сих пор используют врачи (рис. 9). По Коху, микроорганизм является причиной заболевания, если выполняется следующая последовательность действий и условий:

  1. микроорганизм постоянно встречается у больных и отсутствует у здоровых;
  2. микроорганизм выделяют и получают чистую культуру;
  3. при введении чистой культуры здоровому он заболевает;
  4. у больного, полученного после третьего шага, выделяется тот же микроорганизм.

Рисунок 9. Постулаты Коха. Схематическое изображение последовательности действий, позволяющих ученым определить, какой микроорганизм вызывает заболевание.

иллюстрация Ирины Ефремовой по «Википедии»

С течением времени эти постулаты немного менялись, однако именно они стали основой для дальнейшего развития вакцинации. Благодаря созданным Пастером и Кохом методам культивирования стало возможным получение аналога той жидкости, которая в случае с оспой становилась доступна сама по себе. Нагляднее всего влияние этих достижений можно видеть в случае с вакциной БЦЖ, нанесшей первый удар по бичу казарм и тюрем — туберкулезу.

Для разработки вакцины против туберкулеза использовали возбудителя бычьего туберкулеза — Mycobacterium bovis. Еще сам Роберт Кох отделил его от возбудителя человеческого туберкулеза — Mycobacterium tuberculosis. В отличие от коровьей оспы, вызывавшей лишь легкое недомогание, бычий туберкулез опасен для людей, и применение бактерии для вакцинации было бы неоправданным риском. Двое сотрудников института Пастера в Лилле придумали остроумное решение. Они высеяли возбудителя бычьего туберкулеза на среду, состоящую из смеси глицерина и картофельного крахмала. Для бактерии это было райским курортом. Только, в отличие от современных офисных сотрудников, бактерии провели в таких условиях не две недели, а 13 лет. 239 раз врач Кальметт и ветеринар Герен пересеивали бактерию на новую среду и продолжали культивирование. После такого долгого периода спокойной жизни бактерия в ходе вполне естественных эволюционных процессов потеряла свою вирулентность (способность вызывать заболеввание) почти полностью и перестала быть опасной для людей. Так люди поставили себе на службу эволюцию, а врачи получили сильнейшее оружие — вакцину против туберкулеза. Сегодня эта бактерия известна нам как BCG (bacillus Calmette—Guirine) — бацилла Кальметта—Герена (в русскоязычной литературе из-за лингвистического казуса она стала называться БЦЖ, а господина Герена переводчики переименовали в Жюрена), которой мы посвяттим отдельную статью нашего спецпроекта.

Восход солнца

Вакцины хорошо защищали человека от некоторых бактериальных инфекций благодаря Пастеру, Коху и их последователям. Но как быть с вирусами? Вирусы не растут на чашках и в бутылках сами по себе, применение к ним постулатов Коха (особенно касаемо выделения чистой культуры) невозможно. Историю появления противовирусных вакцин нагляднее всего показать на примере полиомиелита. По драматичности она, пожалуй, не уступит многим современным блокбастерам.

Полиомиелит — заболевание, имеющее вирусную природу; полиовирус, его вызывающий, обладает сродством к клеткам нервной ткани. Пораженные нервы перестают проводить сигнал, и возникает паралич, а в некоторых случаях и смерть, если вирус поражает участок мозга, отвечающий за дыхание. Заболеть полиомиелитом могут люди любого возраста, однако чаще всего мы слышим о проблемах у детей (рис. 10).

К разработке вакцины от полиомиелита стремились многие исследователи. Первые шаги в эту сторону удалось сделать, когда разработали методы культивирования вирусов в культурах тканей (о том, как работают с культурами клеток и тканей, мы подробно рассказывали в статье «12 методов в картинках: клеточные технологии» ). Полиомиелит был очень важной целью, потому неудивительно, что сразу несколько групп начали разрабатывать вакцину.

Далее случилась неприятная история, отбросившая создание эффективной вакцины почти на 20 лет. Произошла она в 1935 году на ежегодной конференции Американской ассоциации общественного здоровья (American Public Health Association) . Выступали два исследователя из разных научных институтов.

Первым кафедру занял уважаемый пожилой профессор Джон Кольмер из института Темпла в Филадельфии. Он сумел получить аттенуированную (ослабленную) живую вакцину от полиомиелита и испытал ее на 10 725 детях. У профессора не было контрольной группы. Сразу после введения вакцины у десяти детей развились симптомы полиомиелита. Пятеро умерли, пятеро остались с параличом, в основном конечности, куда вводили вакцину. Кроме того, по некоторым данным, в городах, где Кольмер испытывал свою вакцину, возникали вспышки полиомиелита. Пока Кольмер рассказывал о результатах, зал погружался в молчание. После окончания доклада произошел взрыв. Под крики «Убийца!» профессор покинул кафедру.

Вслед за ним ее занял молодой 30-летний исследователь из Нью-Йорка Морис Броди. Его вакцина от полиомиелита была не аттенуирована, как у Кольмера, а убита формальдегидом. Броди привил ей 7500 детей, еще 4500 получили плацебо. В течение года после процедуры полиомиелит, полученный естественным путем, развился у одного ребенка из основной группы и у пяти — из контрольной. Неплохой результат для новой вакцины. Однако судьба доклада была предрешена. Еще неутихшая после доклада Кольмера ярость толпы вспыхнула с новой силой. Абсолютно незаслуженно Морис Броди получил от коллег по цеху те же эпитеты, что и профессор из Филадельфии. Его уволили из лаборатории, а еще через несколько лет, не сумев найти работу, он умер, предположительно, в результате самоубийства. Профессор Кольмер же не только сохранил пост, но и занимал новые почетные места на протяжении остатка жизни.

Следующий прорыв произошел только в 1950-х годах и связан с именами еще двух исследователей — Джонаса Солка и Альберта Сейбина. К тому времени вопрос о вакцине против полиомиелита перестал быть табу, во многом из-за возросшего количества случаев заболевания. Солк и Сейбин двигались в разных направлениях: первый разрабатывал вакцину по методу Броди — убитую формальдегидом, а второй — живую ослабленную вакцину .

Вакцина Солка стала первой коммерчески доступной. Во многом это произошло благодаря беспримерному на тот момент тестированию — более миллиона детей получили вакцину, что позволило убедительно доказать ее эффективность . Вплоть до недавнего времени она успешно применялась в США. Важной проблемой оказалось то, что иммунитет от вакцинации со временем сходил на нет, и требовались бустерные (повторные) инъекции раз в несколько лет.

Вакцина Сейбина появилась на рынке чуть позже вакцины Солка. Она отличалась от первой как по наполнению, так и по способу применения — ее закапывали в рот, таким же путем, как в организм попадает обычный полиовирус. Результат работы Сейбина оказался не только эффективнее вакцины Солка (иммунитет длился дольше), но и лишен бóльшей части недостатков вакцины Кольмера: побочные эффекты случались значительно реже. Впоследствии отметили еще один интересный эффект этой вакцины: оставаясь живым вирусом, пусть и неспособным вызвать полноценный полиомиелит у подавляющего большинства пациентов, она тем не менее сохраняла инфективность — могла передаваться от вакцинированного человека невакцинированному. Это приводило к распространению вакцинирования без участия врачей. В настоящий момент для совмещения преимуществ обоих видов вакцины, детей сначала прививают убитым вирусом, а после трех процедур переходят на ослабленный. Это позволяет получить сильную защиту практически без риска побочных эффектов . О вакцинации против полиомиелита мы поговорим подробнее в соответствующей статье спецпроекта.

Солк еще при жизни стал легендой. После беспримерных по меркам здравоохранения того времени затрат на разработку и тестирование вакцины он отказался патентовать результат своего труда. Когда в одном из интервью его спросили, почему он этого не сделал, он, смеясь, ответил: «А вы бы запатентовали солнце?» (видео 1).

Видео 1. Джонас Солк о патенте на вакцину

To be continued…

Первую настоящую вакцину осознанно ввел ребенку в 1774 году Бенджамин Джести. Почти 250 лет назад началось движение, благодаря которому люди практически забыли о третьем всаднике Апокалипсиса, имя которому Мор. С тех пор мы официально избавились от оспы, образцы которой хранятся лишь в нескольких лабораториях по всему миру. Полиомиелит не побежден, но количество ежегодных случаев уже измеряется единицами, а не десятками тысяч, как полвека назад. Холера, столбняк, дифтерия, сибирская язва — всё это призраки прошлого, которые уже почти не встречаются в современном мире. В книге «Добрые предзнаменования» Терри Пратчетт и Нил Гейман отразили это изменение общественного сознания, заменив всадника Апокалипсиса по имени Мор на Загрязнение окружающей среды. Но это уже совсем другая история…

Человечество прошло долгий путь к пониманию природы болезней и понесло значительные потери, пока разрабатывались способы защиты от них. И тем не менее мы справились. Природа постоянно бросает нам новые вызовы, то в виде ВИЧ, то лихорадки Зика. Грипп мутирует каждый год, а герпес умеет прятаться в организме и ждать подходящего часа, никак себя не проявляя. Но работа над новыми вакцинами кипит, и скоро мы услышим новости с фронтов о победе над новыми и старыми врагами. Пусть же Солнце светит вечно!

Партнер публикации этой статьи — медицинская компания «ИНВИТРО»

Компания «ИНВИТРО» выполняет и развивает лабораторную диагностику в России вот уже 20 лет. Сегодня «ИНВИТРО» — крупнейшая частная медицинская лаборатория, имеющая более 1000 офисов на территории России, Украины, Белоруссии, Казахстана, Армении и Киргизии. Направления ее деятельности — лабораторные анализы и функциональная диагностика, включающая магнитно-резонансную томографию, маммо- и рентгенографию, УЗИ и другие.

Лабораторная диагностика

«ИНВИТРО» использует в своей работе высококачественные тест-системы ведущих мировых производителей и высокотехнологичные IT-решения. Так, применяемые в лаборатории анализаторы объединены уникальной для России информационной системой SafirLIS, которая обеспечивает надежную регистрацию, хранение и быстрый поиск результатов исследований.

Политика в области качества в компании основана на международных стандартах, предполагает многоуровневое обучение сотрудников и внедрение самых современных достижений лабораторной диагностики. Результаты исследований, полученные в лабораториях «ИНВИТРО», признают во всех медицинских учреждениях.

«ИНВИТРО» регулярно участвует в программах оценки качества — ФСВОК (Федеральная система внешней оценки качества клинических лабораторных исследований; Россия), RIQAS (Randox, Великобритания) и EQAS (Bio-Rad, США).

Выдающиеся достижения компании в области качества отмечены на государственном уровне: в 2017 году «ИНВИТРО» стала лауреатом соответствующей Премии правительства РФ.

Инновации — важнейшее направление для «ИНВИТРО». Компания является основным инвестором первой в России частной лаборатории биотехнологических исследований 3D Bioprinting Solutions, открывшейся в Москве в 2013 году. Эта лаборатория считается одним из мировых лидеров в области трехмерной биопечати, первой в мире напечатавшей щитовидную железу мыши.

Материал предоставлен партнёром — компанией «ИНВИТРО»

  1. Michaela Harbeck, Lisa Seifert, Stephanie Hänsch, David M. Wagner, Dawn Birdsell, et. al.. (2013). Yersinia pestis DNA from Skeletal Remains from the 6th Century AD Reveals Insights into Justinianic Plague. PLoS Pathog. , e1003349;
  2. Francis J. Brooks. (1993). Revising the Conquest of Mexico: Smallpox, Sources, and Populations. Journal of Interdisciplinary History. , 1;
  3. Секретное оружие конкисты;
  4. Edward N. Janoff, Ruth Lynfield. (2003). Smallpox: remembrance of things past, or the coming plague?. Journal of Laboratory and Clinical Medicine. , 211-215;
  5. Donald A. Henderson, Thomas V. Inglesby, John G. Bartlett, Michael S. Ascher, Edward Eitzen, et. al.. (1999). Smallpox as a Biological Weapon. JAMA. , 2127;
  6. Dhiman Barua. (1992). History of Cholera. Cholera. 1-36;
  7. Вакцины в вопросах и ответах;
  8. Raymond Gani, Steve Leach. (2001). Transmission potential of smallpox in contemporary populations. Nature. , 748-751;
  9. Mercuriale G. De Pestilentia Hieronymi Mercurialis Foroliviensis Medici Praeclarissimi Lectiones Habitae Patavii MDLXXVII Mense Ianuarii. Meiet, 1577. — 114 p.;
  10. Nicolau Barquet. (1997). Smallpox: The Triumph over the Most Terrible of the Ministers of Death. Ann Intern Med. , 635;
  11. Inaya Hajj Hussein, Nour Chams, Sana Chams, Skye El Sayegh, Reina Badran, et. al.. (2015). Vaccines Through Centuries: Major Cornerstones of Global Health. Front. Public Health. ;
  12. Gulten Dinc, Yesim Isil Ulman. (2007). The introduction of variolation ‘A La Turca’ to the West by Lady Mary Montagu and Turkey’s contribution to this. Vaccine. , 4261-4265;
  13. Микиртичан Г.Л. (2016). Из истории вакцинопрофилактики: оспопрививание. Российский педиатрический журнал. , 55–62;
  14. Ann M. Becker. (2004). Smallpox in Washington’s Army: Strategic Implications of the Disease During the American Revolutionary War. The Journal of Military History. , 381-430;
  15. Quinn H. Becker. (1986). George Washington and Variolation; Edward Jenner and Vaccination-Reply. JAMA. , 1881;
  16. Stefan Riedel. (2005). Edward Jenner and the History of Smallpox and Vaccination. Baylor University Medical Center Proceedings. , 21-25;
  17. A. J. Morgan, S. Parker. (2007). Translational Mini-Review Series on Vaccines: The Edward Jenner Museum and the history of vaccination. Clinical & Experimental Immunology. , 389-394;
  18. C. Franco-Paredes, L. Lammoglia, J. I. Santos-Preciado. (2005). The Spanish Royal Philanthropic Expedition to Bring Smallpox Vaccination to the New World and Asia in the 19th Century. Clinical Infectious Diseases. , 1285-1289;
  19. N J Willis. (1997). Edward Jenner and the Eradication of Smallpox. Scott Med J. , 118-121;
  20. 12 методов в картинках: микроскопия;
  21. H. Gest. (2004). The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes and Records of the Royal Society. , 187-201;
  22. Кох и все его палочки;
  23. Stefan H.E. Kaufmann, Ulrich E. Schaible. (2005). 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus. Trends in Microbiology. , 469-475;
  24. 12 методов в картинках: клеточные технологии;
  25. Williams G. Paralysed with Fear: The Story of Polio. Springer, 2013. — 354 p.;
  26. A. B. Sabin. (1985). Oral Poliovirus Vaccine: History of Its Development and Use and Current Challenge to Eliminate Poliomyelitis from the World. Journal of Infectious Diseases. , 420-436;
  27. J. F. Modlin, N. A. Halsey, M. L. Thoms, C. K. Meschievitz, P. A. Patriarca, the Baltimore Area Polio Vaccine Study Group. (1997). Humoral and Mucosal Immunity in Infants Induced by Three Sequential Inactivated Poliovirus Vaccine-Live Attenuated Oral Poliovirus Vaccine Immunization Schedules. Journal of Infectious Diseases. , S228-S234.

Полезная и интересная информация о прививках. История прививок.

Инфекционные болезни преследовали человека на протяжении всей его истории. Известно множество примеров опустошительных последствий оспы, чумы, холеры, тифа, дизентерии, кори, гриппа. Упадок античного мира связан не столько с войнами, сколько с чудовищными эпидемиями чумы, уничтожившими большую часть населения. В XIV веке чума погубила треть населения Европы. Из-за эпидемии натуральной оспы через 15 лет после нашествия Кортеса от тридцатимиллионной империи инков осталось менее 3 миллионов человек.

В 1918-1920 годах пандемия гриппа (так называемой «испанки») унесла жизни около 40 миллионов человек, а число заболевших перевалило за 500 миллионов. Это почти в пять раз больше, чем потери во время Первой мировой войны, где погибли 8 с половиной миллионов человек, а 17 миллионов были ранены.

Наш организм может приобрести устойчивость к инфекционным заболеваниям — иммунитет — двумя путями. Первый — заболеть и выздороветь. При этом организм выработает защитные факторы (антитела), которые в дальнейшем будут оберегать нас от этой инфекции. Этот путь тяжел и опасен, чреват высоким риском опасных осложнений, вплоть до инвалидности и смерти. Например, бактерия, вызывающая столбняк, выделяет в организме больного самый сильный на планете токсин. Этот яд действует на нервную систему человека, вызывая судороги и остановку дыхания-

Каждый четвертый, заболевший столбняком, умирает.

Второй путь — вакцинация. В этом случае в организм вводятся ослабленные микроорганизмы или их отдельные компоненты, которые стимулируют иммунный защитный ответ. При этом человек приобретает факторы защиты от тех заболеваний, от которых привился, не болея самим заболеванием.

В 1996 году мир отметил 200-летие первой вакцинации, произведенной в 1796 году английским врачом Эдвардом Дженнером. Почти 30 лет Дженнер посвятил наблюдению и изучению такого явления: люди, переболев «коровьей оспой», не заражались натуральной оспой человека. Взяв содержимое из образовавшихся везикул-пузырьков на пальцах доильщиц коров, Дженнер ввел его восьмилетнему мальчику и своему сыну (последний факт малоизвестен даже специалистам). Спустя полтора месяца заразил их натуральной оспой. Дети не заболели. Этим историческим моментом датируется начало вакцинации — прививок с помощью вакцины.

Дальнейшее развитие иммунологии и вакцинопрофилактики связано с именем французского ученого Луи Пастера. Он первым доказал, что болезни, которые теперь называют инфекционными, могут возникать только в результате проникновения в организм микробов из внешней среды. Это гениальное открытие легло в основу принципов асептики и антисептики, Дав новый виток развитию хирургии, акушерства и медицины в целом. Благодаря его исследованиям были не только открыты возбудители инфекционных заболеваний, но и найдены эффективные способы борьбы с ними. Пастер открыл, что введение в организм ослабленных или убитых возбудителей болезней способно защитить от реального заболевания. Им были разработаны и стали успешно применяться вакцины против сибирской язвы, куриной холеры, бешенства. Особенно важно отметить, что бешенство — заболевание со 100%-ным смертельным исходом, и единственным способом сохранить человеку жизнь со времен Пастера была и остается экстренная вакцинация.

Луи Пастером была создана мировая научная школа микробиологов, многие из его учеников впоследствии стали крупнейшими учеными. Им принадлежат 8 Нобелевских премий.

Уместно вспомнить, что второй страной, открывшей пастеровскую станцию, была Россия. Когда стало известно, что вакцинация по методу Пастера спасает от бешенства, один из энтузиастов внес в Одесское общество микробиологов тысячу рублей, чтобы на эти деньги был направлен в Париж врач для изучения опыта Пастера. Выбор пал на молодого доктора Н. Ф. Гамалею, который позже — 13 июня 1886 года — сделал в Одессе первые прививки двенадцати укушенным.

В XX веке были разработаны и стали успешно применяться прививки против полиомиелита, гепатита, дифтерии, кори, паротита, краснухи, туберкулеза, гриппа.

ОСНОВНЫЕ ДАТЫ ИСТОРИИ ВАКЦИНАЦИИ

Первая иммунизация против оспы — Эдвард Дженнер

Первая иммунизация против бешенства — Луи Пастер

Первая успешная серотерапия дифтерии — Эмиль фон Беринг

Первая профилактическая вакцина против дифтерии — Эмиль фон Беринг

Первая вакцинация против туберкулеза

Первая вакцинация против столбняка

Первая вакцинация против гриппа

Первая вакцинация против клещевого энцефалита

Первые испытания полиомиелитиой инактивированной вакцины

Полиомиелитная живая вакцина (пероральная вакцинация)

Заявление ВОЗ о полной ликвидации человеческой оспы

Первая общедоступная вакцина для профилактики ветряной оспы

Первая общедоступная генноинженерная вакцина против гепатита В

Первая вакцина для профилактики гепатита А

Первая комбинированная ацеллюлярная коклюшная вакцина для профилактики коклюша, дифтерии, столбняка

Первая вакцина для профилактики гепатитов А и В

Первая комбинированная ацеллюлярная коклюшная вакцина для профилактики коклюша, дифтерии, столбняка и полиомиелита

Разработка новой конъюгированной вакцины против менингококковой инфекции С

Первая конъюгированная вакцина для профилактики пневмонии

Рекомендуем посмотреть:

Какими бывают вакцины

Календарь профилактических прививок

Когда нельзя делать прививку ребёнку

Безопасны ли прививки? Какие возможны осложнения после прививок

Нет комментариев. Ваш будет первым!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *